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Abslracl-This wtlrk presents a one-dimensional analysis of the bonding stresses at the interfaces
between the adhesive bond lines and the adherents for both the symmetric. double lap and double
strap joints. due to several typical moisture profiles distributed along the adhesive material. The
analysis considers linear elastic behavior and presupposes the forms of kinematic fields. The for­
rnulation then follows variational principles and the interlaminar stresses arc evaluated as Lagrange
multipliers which are incorporated into the internal energy. Based on the derivation of linear elastic
residual stresses. linear viscoelastic solutions arc also obtained bv Direct Method. The linite element
method (FEM) is adopted to yield numerical predictions in eO~lparison with the linear elastic and
vi...:oelastic solutions. The stresses along the normalized length. the x-a:'lis. arc very close for
o ~ x ~ n.7; fllr n.7 < x ~ I both linear elastic and viscoelastic solutions arc very close and the
FEM solution reaches singularity at the free edge due to the so-calletl edge clfecl. In .ltldition. the
theoretical ami numerical n:sults all indicate that the most detrimental stresses arise at the free edges
during mllisture de,,'rption.
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non·dimension.1I terms
non·dimension;.1 terms
non-dimensional lerms
thid ness of adhesive
len.:th or outer ;ulherent
eOI;lpli"lIl:e
Young's modulus
adhesive I"yer
body fllrce density
non·dimension.1I terms
power of time
thi<:kness of adherent
sub ind<::'1
subinde:'l
<:onst"nts
non-dimension;1I terms
left
moment or resultant
moisture distribution
norm,,1 stress resultant
non-dimensional interl'llninar normal stress
interlamin"r norm,,1 stress
interlamilwr shear slress
shear n:sultant
non·dimension,,1 terms
right side
transverse stress result"nt
L"pl,,<:e tr"nsrorm r;l<:tor
tr,,<:ti,'n
non·dimension,,1 interlamin"r tangential stresses
time
internal energy
e.~tern,,1 work
displa<:ement in x-":'Iis
displ"<:ement in r';l:'lis
displ,,<:ement in:-;uis
a:'llS
aXIs
a:'llS
central adherel1l
adhesive filler
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:.:; oUh:r adherent
{I moisture C\panSion co<:lftc,cnt
,i \ ana til,"

strain
:\ Lam': constant
II Lame conslanl

P"isson's rali"
'P nl,"·dimcnsi,,"al h:rm
" n"n·dimcnsi,'nal h:rm
r; normal slress
r shear slrcss

e\tcmal tracti,'"

INTRODUCTIO:\

Adhl:sively bonding joints have inl.:rl:asingly bl:en utilized in engineering applil.:ations
(Sl.:hwartl and Goodman. 1982: Sl.:hwartz. 19H4) instl:ad of mechanical joints. sUl.:h as bolt.
weld. rivet. etc. However. many observations have indil.:ated that these joints may fail untkr
long-term exposure to humidity and to various temperature changes (Hoskin and Baker.
1986).

This paper presents an analysis of the stresses whil.:h arise at the interfaces between the
adhesive and the udhen:nts of the symmetric. doubk bp and strup joints due to the typil.:al
moisture distributions caust:d by long-term environmentul clrects along the very thin layt:r
of udhesive. Since the adht:rents arc much stifleI' than the adhesive. they t:onstrain its
tcndcnl.:)' to swell and deform under moisture sorption. therehy introducing residual stresses
into the joint. The analysis accounts 1'01' the hending of tht: outa adht:rents dut: to the
t:xpansion or the adhesive and 1'01' the compression or tht: inner adherents.

The prohkm can also he extended to the temperature c11ccl hy repbcing the moisture
sorption and considcring the dilkrent thermal expansion I.:ocllkients for 'Idherents and
adht:sivl:. In the CISl: 01' both temperaturl: and moisturt: changl:s. Lhl: intl:raetion 01' nwisturl:
by tt:mperature change and vi\.·e versa in adherents and adhesive will be a topic for further
study. The mathematical modeling of the nh.:dlanieal hehavior of the joint employs vari­
ational ml:thods and is appl'llximate in nature. First. the response is assumed to be linear
elastic. Then. the response I.:an actually be heller described to be linear viscoclastk. Com­
putations arc Pl:rrormed with matl:rial properties that arc representative of uluminllm
adherents and epoxy aJhesivl: in linear clastil.:. linear viscoelastic and finite element ml:thods.

To datl: therl: exist soml: investigations which I.:onsider Lhe clreets of non-uniform.
time-transient moisture :lIld.or templ:rature distrihutions on the mel.:hanil.:al response of
materials and structures (Crossman t'f al.. 1\)7\); Flaggs and Crossman. 197\): Ramanko
and Kanu~. ItJXO: Weitsman. 1\)77a.h. 1\)7\). 19XO: Jen and Weitsman. 1981). Some of these
papers (Cro~sman t'( til.. ILJ7\): Weitsman. ILJ77h) deal with moisture atrected material
re~ponsewhil<: others (Flaggs and Crossman. I\)7\); Ramanko and Kanus. 1980: Weitsman.
I\)77a. ItJ7\). 1980; Jen and Weitsman. I\)X I) evaluate lllllisture-induced stresses in adhesive
joints. Of the latter. Flaggs and Crossman ( IlJ7LJ) and Ramanko and Kanus (1980) providl:
numerical solutions.

In view of the high degrl:e or I.:omplc.'\ity involveJ in describing the multi-faceted etrccts
of moisture. especially on the response of the adhesive. it is ohvious that any detaileJ
accounting must be done by means of numerical metlwJs. Howt:ver. this vcry same com­
plexity justifies an indepenJent evaluation hased upon idealized assumptions whosl: aim is
to provide at Ie.lst partial verification of the numcril.:al results. The present work strives to
fulfil this task.

LINEAR ELASTIC FOR~ln.ATlON

Consider the symmetric. double lap joint shown in Fig. Ia and the double strap joint
in Fig. Ib. There is. however. an ambiguity in the definition of the symmetric. douhle lap
joint (Fig. la), some researchers I.:alling Fig. la a douhle lap joint without a ccntral adherent
and soml: I.:alling Fig. Ib a double doubler joint. Due to the geometric symmetry it is
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sullicient to analyze only the first quadrant. x ~ O. =~ O. The moisture profiles arc also
assumed to be symmetric in both x and =axes. The induced swelling strains into the adhesive
layer which. constrained by more rigid adherents "1" and "2". gives rise to internal stresses
in the joinl. We also aim to analyze the displacements 01'''2''.

A. Stress-stra;1I relat;ollS

First we consider linear elastic response. assuming plane strain (I:, = 0). and regard
the outer adherents to deform as plates by employing Kirchhoff's relation (Donnell. 1976)
in the bending theory of isotropic plates. since it is purely kinematic in form. Let 111 = lIl(x)

denote the moisture distribution induced by moisture sorption; then. denoting the Lame
constants by i\ and 11 we have the following stress -strain relations.

(a) III "I" (n'lItraladherellt).

(I)

Denoting the displacements by II, and II',. and discarding the shear. we assume the strain ­
displacement relations for this adherent:

E-:'{ = ii', (2)

In eqn (2) and in the following primes denote derivatives with respect to x.
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(3)

(b) In ":!" (outer adherent). Following the beam theory approximation we consider
e, = 0 and (1: = 0; then. by Hooke's Law. we obtain

I - v;
C, = --E--- (1,.

Denoting the displacements in this adherent by U; and 11'> and following classical beam
theory. we obtain

(4)

(c) In "e" (adhcsire layer).

fT, = (Ac +:!IL,.)f:, + Ac /:: - (3A,. + :'/1,·)/fll/

fT: = A.. ,:, + (A,. +:'ILc)f:: - 01\, +:!II,·)/fll/

r ,: = Il c " ,:. (5)

In eqn (5) m = mIx) is tht: moisture content and If denotes the moistun: expansion
coctllcien t.

In vicw of its cxcccdingly small thickncss wc now assumc thc displal:cmcnt u to
vary linearly in :. namcly. II = 1I,.+:'·c' In addition. denoting hy I\'+ and 11'- the vertil:al
displal:el11cnts at the top and bottom of the adhesive layer we assumc ,:: = (11'1- - II' )/a.

Then. wc consider thc shear strain " ,: :::: r dG,. = (II I- -II ) a = ;',.. Finally. I:, :::: II;. +:;';..
u = u, - ay,./2. u I- :::: 11,. +a;·,./:!.

(d) /11"1 c" (adhesirejiller). For thc double strap joint, thc equations arc thc samc as
Clin (I). cxcept for adding suosl:ript e in Lame wnslants and strains. Wc also assumc the
Jisplal:cment u to vary Iincarly in : for thc adhesive I;lycr.

B. ,\'tress resllirants
In order to cvaluate the intcrnal and external work. wc now ddinc SOllll: stress resultants

with n:spcl:t to cal:h l:entcr line in thc 100:all:oordinatcs as follows.

(a) In "I" (central adherellt).

(b) In ":!" (ottler adherents).

(6)

(c) In "c" (adhe.l'iL·(' layer).

f
h'

;\I! = :fT, d: =
~h,. 2

E h' "
., U'"

l-v'I:!'
(7)

N, = f,,;; (1,d: = (A,.+:!IL,.)cm;.+A,,(II·;-II'I)-(3A,.+2IL,,)alfll/

S, = fu;; fT:d: = A,au;.+(A,+2IL,.)(II';-II'd-(3A,.+2IL,.)aIJm

(8)
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In the first two parts ofeqn (8) we employed the continuity conditions w'" = II';:. w- = WI'

(d) In "\e" (ad/lI:sicefilla).

,Vic = fh (J, d;- = (Af+2i1f)/ILI'I<+A"ll"i,,-(3A•. +2i1f)lIflm

"

(9)

Equations (6)-(9) are the stress resultants obtained by the substitution of stresses of
eqns (I )-(5).

C. Principle of l'irllla/lrork and .'Iocanin.'! elfllations
We now employ the principle of virtual work M! =:: ()W, where ()U and JW are the

variations of internal and external work, respectively, as formulated in terms of kine­
matically admissible displacement fields (Dym and Shames, 1(73). In our formulation we
shall ascertain the continuity of all displacements. at the interfaces between adhesive and
adherents, hy employing Lagrange multipliers Ifl. C(~. f'l and P~. respectively. We thus have

(10)

Integration-by-parts of c4n (10) and collcction of tcrms which multiply each of the
illlkpendenl variations (ill I. ()II~. (ill,., (iIl'I' ()II·~. (ill". (ill' • ()lfl. (i(/~. (iPI. i5p! and i5Yf yield
the following lield cquations:

-N'I-Ifl = 0

-N'~ +lf~ =:: 0

- .v ~ - if ~ + if I = 0

a a
Q.. - ..,C(;- ,lfl- M~ = 0

- -
I
IISI-pi = 0

II
- AI': - -l/', +1" = 0- 2 - -

I
-S-p,=Oa r •

I
- -S.+pl = 0

a
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a
/I,. - ., ;'" - III = 0

Ire -II'" = 0

II' -11'1 = O.

Equation II (i-I) expresses the continuity conditions of displacements at the interfaces.
which verifies that our previous assumptions are corrt'Ct.

Denoting components of external traction with an asterisk. we have the following
expression commensurate with the integration-by-parts of eqn (10) :

Note that the lagrange multipliers p" p~, q, and q~. which are the force conjugates of the
vertical and horizontal displacements at the interfaces. represent the interlaminar normal
and shear stresses. Equation (II) gives

I ,," ,
l'1 = l'! = ."i,. = fy/ ~ + ., q~.

1I
( I :!)

PrOl.:eeding in the standard manner, and eliminating /II and Il~ with the aid of eqn
(II i.j). we obtain the "natural" houndary conditions fix our problem from the components
in the variational form of external tradion. ()JV. and l:Ondude that following kinematic or
traction quantities Illust bc pn:scribed at x = () and x = l':

II" or N, +N!+N., and

a a
I" or 2N~-2NI+M" and

, " amIII'! or M ~+ 2q~

II
u'l or - N,-M,. (l3a -d)2' .

At this point we nole that eqn (1Iac) yields N 1+N~+N,. = constant. In the absence
of external loads we get N 1+ N ~ + N" = 0, whereby this lidd rdation autonmtically incor­
porates the traction-free boundary condition listed in eqn (13a). For instance, the right part
of eqn (Db) is produced by substituting eqn (1Ia) illlU eqn (II b) into eqn (lId) and then
integrating.

Omitting eqn (13a). which must be satisl1ed as a l1eld equation. we get at the traction­
free boundary x = (':

( 14)

II
- N,-M, = O.., - .
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Symmetry considerations provide us with the following four boundary conditions at x = 0:

lie =0

}'l! =0

, h
J[, + -q, = O.

- 2'

We now introduce the non-dimensional moduli ratios

(15)

(16a)

Jle •
~~--.,-= I,.
3A"+~Jt,, '

t\ ,
--~- = I,.
31\" + ~JI" .

the non-dimensional distances and variahies

"= 'I.e

{/

.. = If'.
I'

\II X
X =

('
(160)

and the non-dimensional kinematic va ria hies

II" = {/II~/l. ( 16c)

Elimination of 1'1. I'!. q" C/!. 11 .. II Co Ir' and It' from eqn (I I). employment of eqn
(X). non-dimensionalization ofeqn (16) and aller several manipultions ofeqn (11c-f) yields

(l7a-<l)

In eqn (17) {) designates derivative with respect to x'\/> and all variahIes arc non-dimensional.
The expressions for A, are given in eqns (A I) in the Appendix.

In a similar manner we can obtain the non-dimensional version of the seven boundary
conditions. eqns (14) and (15). at X,\/l = 0 and -",vI> = I. and expressions for the non­
dimension.1I interlaminar stresses 1/1' Ch. PI and p!.

The system eqn (17) is of seventh order in the operator D. commensurate with the
seven boundary conditions. eqns (14) and (15), To solve our boundary value problem wc
wish to represent eqn (17) by a systcm of first order differcntial cquations. This rcduction
cannot be accomplished directly because a straightforward procedure. e.g.• DUe = X"
D!u., = X!. D~ue = X;. etc.• would introduce extraneous redundancies. To avoid these
redundancies we first eliminate WI from eqn (17c) and then differentiate and combine the
remaining equations to lower the order of the highest derivative of lie (len. 1980). In this
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manner we obtain the equivalent system:

BIDue+B~Dj'e+(B,D~+B~)lr~= Cipm

(BI-D~+B7)i'.+(BIMD'+BlyD)lr~= C,pm'

B'IDue+BI~DI'e+(BI,D~+BI6D~+BI.,)Il·;= C~pm"+C,pm. (18)

The expressions for B, and C, are given in eqns (A2) in the Appendix. We now denote

x, = /Ie' X', = DUe. X~ = j'e' X, = X'>

X~ = Ir~. X 5 = X~. .r6= .r'5' X 7 = X~. (19)

The system ( 18) then reads

B, 0 0 0 0 0 0 XI

0 I 0 0 0 0 0 X~

0 0 B I7 0 0 0 0 X,

0 0 0 I 0 0 0 X~

0 0 0 0 I 0 0 X5

0 0 0 () 0 I () X/,

1/" () 0 () () 0 1/'5 X7

0 0 -lJ~ -lJ~ 0 -Il, () XI C ,[/11I

() 0 I () () 0 0 X~ ()

() -B) () () -BI" 0 -B, " X, (',[/11I'

() 0 0 0 I 0 0 X~ + 0

() 0 0 0 0 I 0 X, 0

0 () () () 0 0 I X" 0

() 0 -lJl~ -B 11 () -lJlb 0 X) C ~ II/III" + C.,[JIII

(20)

Written compactly. el/n (20) reads

[AI(X') = (8)(X)+(C)

whereby

(X') = [Dj(X)+(£)

with

[D] = [A) - '[B]. (E) = [A]' I (C). (21 )

D. So/ution ojequations
The solution scheme deviates from the standard method (Hochstadt. 1963: Kolman.

1965; Coddington and Levinson. 1955). because ours is a boundary value. not an initial
value problem.

The complete solution (X) is formed by superposition of a particular solution (XI') and
a complementary solution (W). The particular solution (XI') is taken to satisfy eqn (21)
with null initial conditions (Xr(O» = (0) and can be formed by standard methods. The
complementary solution (W) is constructed by considering (E) = (0) in eqn (21) and in a
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manner which. together with (Xp ). satisfies the boundary conditions at x = 0 and x = l.
Note that (X). (Xp ) and (W) are seven-dimensional vectors.

Employing eqn (19). the non-dimensional boundary conditions are:

XI (Ol = O. .r~(O) = O. X 5(0) = O.

~"X7(O)-3X:l(O)-6X"1(0) = O.

~rIXb(I)-3XJ(I)-6X',(I) = O.

~"X7(1)-3X'J(I)-6X';(I) = O.

RI·'"'I(I)+R;XJ(I)+RJXb(I)+R4X4(1) = R 5fJm(I). (22)

The expressions for R, are given in eqns (A3) in the Appendix.
Since much of what follows accords with standard methods (Hochstadt. 1963; Kolman.

1965; Coddington and Levinson. 1955). we shall omit details to retain brevity; a complete
analysis is given in Jen (1980L

To detcrmine the particular solution we consider thc cigcnvalue problem
[Dr+i.[/] = 0 which yields sClien eigenvalues. one of which. say ;'1' turns out to be A.) = O.
with the rcmaining six values gencrally being complex. Denoting the distinct eigcnvalues
by i. l . i.; . .... i.7• and the corresponding eigenvectors by (a I). (a c), ...• (a7). it can be shown
that

with components cxpressed in terms of 8,. B; .... . lJ l ... derived before by Jen (1980).
We now construct the 7 x 7 matrix [I{II with clements (p" = a,~ exp (i.,x) (no sum on)).

This matrix can be written as

[lp,,1 = [diag eA,'1[0/;1.

Conseq ucn tly

in eqns (23) and (24); ;.j = I, 2..... 7.
We also form the vcctor (;,(x) by generating

(11(.1'» = [lp(y)I(E(y». then G,(x) =iX

fl,(y) dy.
n

After several manipulations it can be shown that

(23)

(24)

(25)

G,(x) = (I,7!!x L' CAlI m(y) dY +(I,l.CJJ/{cA
" m(x) -m(O) -i., L' cA

,,' m(y) dyJ

+a,7.Q 7fi[e; I < m' (x) -m'(O) -i., cA
" mIx) + i.,m(O) + i.,; i' CA,f m(y) dy] (26)

n

(no sum on i. i = 2.3....• 7.)

The particular solution (Xp ) is given by

7

Xp, = L (Pi7'(x)G,(x) i = I, 2..... 7.
i~ I

(27)
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Or. in more detail

XPI = <P"I I(X)P{(9 I +a 1791\)L~ me)') dy+ (J I.g,[m' (x) -m' (O)]}

+ ±<P'k l (X)p{a0 9 11 f,' e;"m(Y)+U091[e;,tm(x)
( = : u

-m(O)-).k f.t e,.rm(Y)dY]+Uk79{e;'<n1'(x)-m'(O)

-i'k e"'m(x)+i.km(O)+;.i Lt ei ,r1r/(Y)dY]} (no sum onk). (27a)

As already mentioned. the construction eqn (27) satisfies (X/I(O» = (0). but does not
meet houndary conditions eqn (22).

To satisfy eqn (22) we incorporate the complementary solution (W). To construct (W)
weconsidcr (W') = {V ](W). with [OJ given in eqn (21). and solve the characteristic equation
det(V-(/) = O. The components of V" arc expressible in terms of 8 1.8:. .... 8 1•1 (len.
19RO) and we again ohtain seven eigenvalucs (1. with "lssociated eigenvectors. As in the
case of the particular solution we have .1 null eigenvalue. say CI = {} (Jen. 1lJXO).

After several straightforward manipulations we get

WI = 1\.+ t I\f{![:I-.\(-k7~-k7tt(/+(;I)+kI4+kl,.(/]}e~i'
1- 1 (" 1\ 7\

7

W.j = L hie:"
I ~

7

w· = " h r C" I, L J~i

J" !

1
II' L L'''' • x
H" = '" I' e"l\ J"'-'

I 1

1
IIf "L' .. J "
~r 1 = L. "',,,, C" •

I .... 1
(2l'l)

In cqn (1X) h,. i = I. 2....• 7. "1re arbitrary constants. The various k,/ arc listed in cqns (A4)
in the Appendix.

In view of cqns (22) and (27) we obtain the following seven equations to determine
lhe conslants K,. i = 1.2.....7:

WltO) = 0

W~(O) = 0

W~(O) = 0
1

4tlW,(O)-3W'1(O)~6W';(O) = J L [(p.\~I(O)G;(O)+t/)'\il(O)C,(O)J
/- 1

7

+6 I. [(I> l~' I (O)C;'(O) +2(/'1/ (O)G;<O) + 4>" 1/ (O)G/ (O)!
i= I
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~"W-(1)-3W'.(11-6W·;(I)= -4'1 r. <p':,'(I)G,(I)+31 [<P"I(I}G;(1)
I I ! ; I

459

+ q,',,1 (I IG/( I)] + 6 I: [cPll
l (I }G;'( 1) + 2q,' '-II (1 )G;( I, + ¢" III (l)GJ ( I)J

J; I

~"W,,(I1-3Wdll-6U"dll = -~'1 L <Pllr 1(l)G,(I)+3 2:: ¢.~,I(1)G,(I)
, ; I , ; I

+6 L [cPll l(I)G;(lI+4>',"(I)GI(I)}
I ~ I

R, U"dll+RcU"I(l)+R,W(,(I)+R.. W..(l) = R5fJm(I)-R I I [<Pl,'(1)G;(1)
,; I

+q,' 'I'(I)G,(I)J-R~ I: tp.~/(I)GI(1)-Rl I: q,o,'(1)G,(I)
I" , I; I

1

- R.l L tl> -t/ (I )GI (I ). (.29)
I~ 1

With A.', determined from eqn (29) we Hnally obtain the solution X, = X", + Wi'
Appropriate substitution in eqn (I ~). and employment of the non-dimcnsionalization

eqn (16) and or eqn (19) yield the following expressions for the non-dimensional inter­
laminar tangen1ial ill1d normal stresses:

r = (tf'!/I (f'C/~A\)\,,'._((f':/l + l{l/:A~)r' +/' r,
I ,,+.., _, 'I ,.., .., " ',1, I' •

_ _+ I' _ _~ tJ

.(tf' t: (pI: A 'n). (tf' (f'/~) ,- ., + '} ., .\ 5 + '} -., . /1m
- -. 'I - _All

p = ((P.I~+ (p/jA I)X'I_/IA'I .\'I+(fl +IIAjll)X.:_(I_ II )/JIII.
.-1,/ AI/ ...1<) ...1,/

(30)

E. 5;olttliOfJ ora duuh!e straJl joint
As for it dounle strap joint shown in Fig. In, we have to consida 1\\;,0 parts of adhesive

and adherent. x < lp and x ~ f/>. separately. At the left part (tf> ~ X ;::: 0) the filler is the
same as the adhesive layer. Then J~ =fl. J~ ='/1, j~ = L we may ontain the field c4uations
.IS

(31 )

The right part (I ~ x ~ q,) is the central ndherent of half overhlp length. Similarly. we
ohtain

(32)

The boundary conditions at x = 0 ilfe

'\'1/ (0) = 0, x :,(0) = O. x ~I (0) = o. 4'1.\'7/.(0) - 3X'Ir(0) - 6x'idO) = 0, (33)
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At x ; I they are

41/X7,( I) - 3x"r( I) - 6x';r( 1) ; 0

41/xbr (l)-3xJr(l)-6x'lr(l); 0

R,rx"r( 1) + Rcrx,r( I) - R'rXbr( I) + R.rx.r(l) + R,rm( I) = O.

At the interface x = tp they are

(34)

x1dtp) ; Xlr(tp). xcdtp) = xcr(tp) x.dtp) = x.r(tp). x,dtp); x,r(tp)

4'/X7dtp) - 3x:,dtp) - 6x';dtp) ; 41/x?r!tp) - 3x"r(tp) -6x';r(tp)

4,/x h dlp) - 3X:,dtp) - 6x';dlp) = 4,/xbr (tp) - 3x"r(tp) - 6x';r(tp)

R ILX'ldtp) + RcLx:,dtp) + R'LXbL (tp) + R.Lx.tltp) + R'Lm(tp)

= R1rx'I,(lp) + Rcrx"r(tp) + R'rXbr(tp) + R.rx.r(tp) + R'rm(tp). (35)

Hence. we finally obtain a system of 14 equations of 14 unknowns with a total of 14
houndary conditions. i.e. eqns (33)-(35). SubstilUting the unique solutions of :X}L and
lxl, into eqn (30). we may obtain the interl~leial stresses for hoth parts.

LINEAR VISCOEL.ASTIC SOLUTION

Most engineering materials exhibit creep and relaxation behavior which depends
strongly on temperature. stress level and loading duration. Certain materials. such as clay.
concrele. resin. and some polymers arc inl1uenced appreciably by moisture content as well.
Therefore. tilt: need for us to have a good understanding of time-dependent hehavior has
accelerated in recent years. The theory of linear viscoelasticity is widely used today in
characterizing polymeric materials. This theory is applicable. in principle. to all materials
if the applied loads arc sulliciently small. llence. we adopt the theory to express the stress··
time Ii:ature of the moisture sorption in the adhesive layer.

The basis for the stress analysis ofdouble-lap joints bonded with a viscoelastic adhesive
is the theory oflinear viscoelastic stress analysis. A viscoelastic problelm is generally solved
by the Alfrey (llJ44) correspondence principle. [n the correspondence principle. Laplace
transforms of the time-dependent boundary conditions and field equations are used to
reduce the viscoelastic problem to an associated clastic problem. Then. elastic analysis is
applied to gel the associated elastic solution of the transformed equations. Inversion of the
associated clastic solution results in the desired viscoelastic solution.

We now adopt the linear viscoelastic stress--strain relation (Schapery, 1980) to describe
the adhesive behavior. that is

with the boundary conditions

(36)

It, = V, on Su

(37)

where V, and 7; represent displaccmcnt and traction at i. and Su and Sr denote surface
displacement and force.

Ry Laplace transformation ofcqns (36) and (37) we obtain

ii" = sC7:Ek(

Ii, = OJ on S"

ii"n, = t, on ST (38)
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where s is the variable of its Laplace transfonn. S. and Sr do not necessarily change with
time.

Schapery (1967) derived the stress-strain relationship with the moisture expansion
coefficient independent of time, that is

where V == C7J(t)m.
Assuming the adhesive is homogeneous and isotropic, we can write

PI} == P
C7J(t) == C;'';''IE(t)

(39)

(40)

where c.~kl is a constant and E(t) is the tension modulus. Then eqn (39) can be reduced to

1/ "I Cr."1
(J . == C· E(t-r)-~ dr-{W

1/ n IJ cr .

By Laplace transforma1ion of eqn (41). we obtain

(41 )

(42)

For simplicity. replacing all the material constants and moisture expansion coellkient in
the elastic solution correspondingly by the form of SC/~"I and Ills as expressed in elln (42),
then we receive the viscoelastic solution in the domain of Laplace transform. In order to
solve it reversely we adopt Schapery's Direct Method (Schapery. 1%7); if I'l"(t) has a small
curvature when plotted against the logarithm of time. then

(43)

for all positive values of s. where s is the variable of its Laplace transform.
For many adhesives. Weitsman (!lJSO) suggested that the creep under constant stress

can he expressed by a power law compliance:

(44)

where no is the instantaneous compliance. and D I and.Q arc material parameters. We note.
however, that the elastic stresses in elln (41) are expressed in terms of moduli. Therefore,
we shall employ the highly accurate, though approximate. inversion formula which relates
the relaxation modulus E(t) to the creep compliance D(t). in Laplace transform

Sinl:e

then

- Do reI +9)
D == . - + D I --- -- .

S Sl ·u

_ _ I
ED == -;

S·

(45)

(46)

(47)
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For typical values of epoxy adhesives we choose D" = 1 x 10. 0 (psi) I. D, = 0.1 x 10 h

.'I = 0.1 and If = 0.03 to compute the approximate viscoelastic solution.

TilE FI~ITE ELE:\IE~T \IETHOD

In comparison with linear clastic and viscoelastic solutions. one-4 uarter of the doublc­
lap joint is analyzed because of symmetry about the x and =axes by the tinite element
method to yield a good approximation. Herein. we adopt the second order element for time
and sp,Ke savings with eight nodes. having worked out the third order clement and found
that their results were very close. Obviously. we know that the critical sections of the joint
arc at or ncar the edges of the overlap where the magnitudes of the stresses and their
gradients are high. Therefore. the joint is divided into a mesh of elements of dilTerent sizes.
i.e .. small clements in regions where the stress gradients are high. and large clements in
regions where the stresses are almost uniform.

[n this work we consider it as a one-a.xis problem. the x-axis. The FE:'v[ meshes are
shown in Fig. 1 for the first quadrant of the joint. which includes 484 clements and 1583
nodes. The line segments in the x -= plane an: chosen such that the tinite clement mesh is
tiner in the areas of high stress gradients. The computer program SAP 6 is used for this
task. The maximum aspect ratio of an clement is 10 and occurs in the middle two-thirds of
the overlap. The minimum aspect ratio of one occurs in the area of high stress gradients.
The ditl'crences in the geometries of the various joints analyzed arc incorporated with as
little change in the finitc c1emcnt mesh as possinle.

NlJI\1U{f('AL Rl'st II.TS

In our computati{lns we considl.:rl.:d II = 1.17 cm (0.5"). (/ =: 0.154 cm (0.1") ami
(' = 1.54 cm ( I"). Thl.: material propl.:rties Wl.:n: sckctl.:d to reprcsent an epoxy adhl.:sive and
aluminum adherl.:nts; hcncc l~:. = 3.45 x (()" kPa (5 x 10\ psi). I',. = (U5. /;. = 6.XlJ5 X 10'
kPa (10' psi>. and \' = O.J. Although thl.: adhl.:sive layer thicknl.:ss is thin in practice, we
chose a wry thick adhesivl.: to avoid vcry large aspl.:ct raLios of the demenL and to save
computing Liml.:. The l\Ioisture expansion cOl.:llicient was taken as 11= O.OJ. This eoetJicienL
rclatl.:s linear strain due to moislure weight gain at 100% rdative humidity.

Calculations were performed for 11/(.\) = 11/1 +( 1_11I,).\2, for II/(x) = 1-(1-11I2).\'2,

and for II/(x) = I. The tirst of those cases, with 11/ 1 = O.:!5. represents the state of moisturc

i II~i! I i II
i: 11111[lill!! rr, i: ~---Il

'J::..lIlll!ilIIIIII~III.Ll..IIl-UI: I--"-I..-----'-_~I_ ,
Fig. 2. Thc FEM mcshcs of thc lirst quadrant.
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absorption from the exposed locations x = I, e.g.. the free edge of the first quadrant non­
dimensional distance from the origin. The second case. with m; = O.::!5. demonstrates
the stage of moisture desorption. while m(x) = I signifies equilibrium moisture content.
Although nlme of the above non-uniform distributions corresponds to a solution of the
ditfusion e4uation. these parabolic moisture profiles enable an analytic evaluation of the
linear elastic solution. thus substantially reducing the numerical effort while still dem­
onstrating the basic features of our problem.

The results are shown in Figs 3~ 14. where non-dimensional values of stresses versus
distance are given. To obtain dimensional values we must multiply displacements by a
and stresses by (3A,,+ 2~1,,). Figure 3 shows the non-dimensional displacement \1'; of the
overlapping adherents vs the non-dimensional coordinate x. while Fig. 4 illustrates the non­
dimensional peeling stn:ss P vs x. In this figure and the figures for stresses hereafter.
"ELASTIC' denotes the linear elastic numerical result calculated from eqn (30) for a
symmetric. double lap joint. "FILLER" means the linear elastic numerical result calculated
by FEI\I instead of the Section E solution of a double strap joint without tedious compu­
tation. while ··V.E"· represents the linear viscoelastic solution for a symmetric. double lap
joint at the time change. and ··F.E.M"· illustrates the numerical FEM result by SAP 6 for
a symmetric. double lap joint. Figures 5 and 6 express the interlaminar shear stresses T,

0%

004 -

o(Y~L_----

o
x

hg. l The nUIHhmensional displ;lcemelll IV! of the outer .Il.Jherents vs the non-dimensiunal distance
x fur the first case of moisture absorptiun.
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P r'ller
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-0004 Mo~~
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-0006

FE M

!~..

.~ ElastIC
".' 1-0,-

V.E t -100

Fig. 4. The non-dimensional peel stress P vs the non-dimensional distance x for the first ease of
moisture absorption.
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Fig. 5. Th.: non-dimensional interlaminar shear stress T, vs th.: non-dimensional distance x for the
first case of moisture abstlrption.
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J'ig. 6. The n,Hl-dimensional interlamimtr shear stress TJ vs the non-dimensional dist:tn.:e x for the
lirst ease of moislUre ahsorption.

and T~ vs x. Figures 3 6 correspond to the first case of moisture absorption. as shown in
the insert. The moisture sorption modeled in SAP 6 can be taken for granted as the
temperature ciTed shown in the User Manual.

The normal stress P and interlaminar shear stresses T , and T1 of rEM curves are the
data taken from the interfaces. Near the free edge these stresses behave singularly with a
big jump of the highest absolute value. Figures 7-10 and 11-14 .Ire an.tlogous to Figs 3·6.
but arc unrelated to the second C.lse or moisture desorption and to a uniform equilibrium
moisture distribution. respectively. In cach case the moisture distribution is shown in thc
insert.

DISCUSSIONS

Note the opposite trends exhibitcd by the results of Figs 3~6 on one hand and Figs 7­
lOon the other ror elastic and viscoelastic solutions. During moisture 'lbsorption the outer
adherents possess positive curvatures and the maximal peel stresses .Ire compressive. This
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Fig. 7. The non-dimensional displacement W zof the outer adherents vs the non-dimensional distance
x for the second case of moisture absorption.
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Fig. 9. Thc non-dimensional interJaminar shear stress T, vs the non-dimensional distance x for the
second case of moisture desorption.
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situation reverses itself upon desorption. which is accompanied by severe tensile stresses,
The observation leads us to conelude that desorption is generally more detrimental to the
integrity of the joint. We also note a ren:rsal in the signs of the interlaminar shear stresses.
when comparing the absorption and desorption cases. Furthermore. in both cases T, and
T; arc of opposite sign. a fact which points to the severity of the shear elli.:cts within the
adhesive layer. especially ncar the free edge where a theoretical singularity is predicted by
elasticity theory, The case of uniform elluilibriummoisture distribution, shown in Figs II ­
14. indicates that although the outer adherents displace with only slight bending. the joint
nevertheless sustains suhstantial stresses, These stresses arc attributable to the discrepancy
bctween the moduli of the adhesive and adherent materials,

The ahsolute value of the viscoelastic solution becomcs slightly larger than that of the
elastic solution as the time increases for peeling stress in both absorption and desorption
cases duc to the dccrease of relaxation modulus £(1), i.e .. the adhesive hecomes softer. The
stiffness difrerence between decreasing E( t) ofadhesive and unchanged adherent will become
more significant with increasing time. which results in the slightly larger viscoelastic stresses_
As for interlaminar shear stresses both solutions havc no dilli.:rcncc_ The curves of both
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cases almost intascct at x = 0.6. Similarly. for the equilibrium casc both solutions arc very
close evcn for very long time. because weight gain of moisture will not increase. i.e. it is
independent of time. In comparison with the thermal expansion coefficient we find that the
moisture content change is a very very slow process and its influence is a long-term effect.
Hence. we may neglect the moisture effect for a very short time.

As predicted by elasticity the theoretical singularity at the free edge is verified by the
FEM. The FEM results are very close to the elastic solution at 0 :::; x :::; 0.6 and deviated
slightly at 0.6 < x :::; 0.8. While at x > 0.8 the stresses increase toward the free edge. we
have made even more refinements near the free edge. In most situations the singular stresses
of peel and shear are opposite to the elastic values at the free edge due to random divergence
of the computer program used to treat the singular problem. This problem is similar to free
edges of composite laminates: we can sol\'\: it by finding the order of singularity first and
compute interlaminar stresses (1I:n ('[ al.. 1990a.b).

For a double strap joint. shown in Fig. Ib. the tiny gap between the central adherents
is filled with adhesive which is the same material as the adhesive layer. We have also
obtaim:d the values of stresses denoted by "FILLER" in the figures. In the first case of
absorption the stresses are close to the result of FEl\1 at 0 :::; x < 0.2. In the desorption and
equilibrium cases the filler has a large influence on the stresses of peel and shear and the
change is not limited to a small part ncar the gap. Berg (1970) analyzed a bonded double
lap joint and suggested interleaving the materials of a gap joint to reduce the high stresses
that otherwise occur where the layers meet. Hence. the symmetric. double lap joint is better
than the douhle strap due to the environmental c11"cct of resisting smaller residual stresses.

('ON( ·I.lISIO:"S

This paper presented solutions to sample pwblems which demonstrate the c1l"ccts of
non-uniform moisture proliles on the residual stress lield in bonded joints.

First, the solutions arc derived for a linearly elastic response of both adhesive and
adherent materials which arc based upon n:strictively kinematical assumptions. We then
extend them to apply to the linear viswelastie response. and verify them by using the rEM
to be suitable for double strap joints. Parametric studies, which involved the computation
of interlaminar stresses for increasingly stiller adIH:rents. indicated that the peel stresses
tended to increase and the magnitudes of the shear stresses remained substantially
um:hanged. The last observation indicates that the kinematical assumptions employed in
this paper restrict the validity of our results to adhesive bond lines which are not excessively
thin and our conclusions can serve as guidelines only under these limitatil)ns. A com­
prehensive treatment of the problem presented haein involves the incorporation of the
inelastic and non-linear constitutive behavior of the adhesive. Such tn:,ltment should be
based on numerical formulations and solutions. Finally. we suggest that in the consideration
of environmental c1fccts on adhesives. the interal.:tion of both moisture and temperature
should be paid attention to in further research.
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APPENDIX

Th.· f"ll\lwing e,pressilllls t1dine the Cllllstants ell1pl\lyet! in this paper:
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