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Abstract—This work presents a one-dimensional analysis of the bonding stresses at the interfaces
between the adhesive bond lines and the adherents for both the symmetric, double lap and double
strap joints, due to several typical moisture profiles distributed along the adhesive material. The
analysis considers linear elastic behavior and presupposes the forms of kinematic fields. The for-
mulation then follows variational principles and the interlaminar stresses are evaluated as Lagrange
multipliers which are incorporated into the internal energy. Based on the derivation of linear elastic
residual stresses, hinear viscoelastic solutions itre also obtained by Direct Method. The finite element
method (FEM) is adopted to yield numerical predictions in comparison with the linear elastic and
viscoclustic solutions. The stresses along the normalized length, the x-axis. are very close for
0<x <07 for 0.7 < x < | both lincar elastic and viscoelastic solutions are very close and the
FEM solution reaches singulanty at the free edge due to the so-called edge effect. in addition, the
theoretical and numenical results all indicate that the most detrimental stresses arise at the free edges
duning moisture desorption,
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INTRODUCTION

Adhesively bonding joints have increasingly been utilized in enginecring applications
(Schwartz and Goodman, 1982 Schwartz, [984) instead of mechanical joints, such as bolt,
weld. rivet, etc. However, many observations have indicated that these joints may fail under
long-term exposure to humidity and to various temperature changes (Hoskin and Baker,
1986).

This paper presents an analysis of the stresses which arise at the interfaces between the
adhesive and the adherents of the symmetric, double lap and strap joints due to the typical
moisture distributions caused by long-term environmental effects along the very thin layer
of adhesive. Since the adherents are much stiffer than the adhesive, they constrain its
tendency to swell and deform under moisture sorption, thereby introducing residual stresses
into the joint. The analysis accounts for the bending of the outer adherents due to the
expansion of the adhesive and for the compression of the inner adherents,

The problem can also be extended to the temperature effect by replacing the moisture
sorption and considering the different thermal expansion coctlicients for adherents and
adhesive. In the case of both temperature and moisture changes, the interaction ot moisture
by temperature change and vice versa in adherents and adhesive will be o topie for further
study. The mathematical modeling of the mechanical behavior of the joint employs vari-
ational methods and is approximate in nature. First, the response is assumed to be lincar
clastic. Then, the response can actually be better desceribed o be Iineur viscoelastic. Com-
putations are performed with material properties that are representative of aluminum
adherents and epoxy adhesive in linear clastic, lincar viscockistic and finite element methods.

To dite there exist some investigitions which consider the effects of non-uniform,
time-transient moisture and,'or temperature distributions on the mechanical response of
materials and structures (Crossman ef o, 1979 Flaggs and Crossman, 1979 Ramanko
and Kanus, 1980 Weitsman, 1977a.b, 1979, 1980 ; Jen and Weitsman, 1981). Some of these
pupers (Crossman e of., 1979 Weitsman, 1977b) deal with moisture affected material
response while others (Flaggs and Crossman, 1979 Ramanko and Kuanus, 1980 ; Weitsman,
19774, 1979, 1980 ; Jen and Weitsman, 1981) evaluate moisture-induced stresses in adhesive
joints, Of the latter, Flaggs and Crossman (1979) and Ramanko and Kanus (1980) provide
numerical solutions.

In view of the high degree of complexity involved in deseribing the multi-fuceted effects
of moisture, especially on the response of the adhesive, it is obvious that any detailed
accounting must be done by means ot numerical methods. However, this very same com-
plexity justifics an independent evaluation based upon idealized assumptions whose aim is
to provide at least partial verification of the numerical results. The present work strives to
fulfil this task.

LINEAR ELASTIC FORMULATION

Consider the symmetric. double lap joint shown in Fig. la and the double strap joint
in Fig. Ib. There is. however, an ambiguity in the definition of the symmetric, double fap
joint (Fig. 1a), some rescarchers calling Fig. 1a a double lap joint without a central adherent
and some calling Fig. tb a double doubler joint. Duc to the geometric symmetry it is
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Fig. 1. The geometry of the symmetric, double Lap and double strap joints. (a) Symmetric, double
lap joint. (b) Double strap joint.

sutticient to analyze oaly the first quadrant, x = 0, = 2 0. The moisture profiles are also
assumed to be symmetric in both x and = axes. The induced swelling strains into the adhesive
layer which, constrained by more rigid adherents =17 and 27, gives risc to internal stresses
in the joint. We also aim to analyze the displacements of ©*2™.

A. Stress-strain relutions

First we consider lineuar clastic response, assuming plance strain (¢, = 0), and regard
the outer adherents to deform as plates by employing Kirchhoft's relation (Donncll, 1976)
in the bending theory of isotropic plates, since it is purely kinematic in form. Let m = m(x)
denote the moisture distribution induced by moisture sorption; then, denoting the Lamé
constants by A and g we have the following stress -strain relations.

(@) In V" (cemtral adherent).
o= A+ +Ae.. .= {(A+20)e. + Ac,. Q)]

Denoting the displacements by u, and w, and discarding the shecar, we assume the strain -
displacement relations for this adhcrent:

. Wy

= .= ——, 2
Bo=u = (2)

In eqn (2) and in the following primes denote derivatives with respect to x.
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(b) In =27 (outer adherent). Following the beam theory approximation we consider
g, = 0and . = 0: then, by Hooke's Law. we obtain

£, =~ 0, (3)

Denoting the displacements in this adherent by «. and w.. and following classical beam
theory, we obtain

g = u>—zIwh. ()
(¢) In‘e” (adhesive laver).
o, = (A, +2u e +Ae.— (A + 2 ) fim
.= Aec+H (A 4206, — (3A +2u) i
Ty = M7 (5)

In eqn (5) m = m(x) s the moisture content and f# denotes the moisture expansion
coeflicient.

In view of its exceedingly small thickness we now assume the displacement u to
vary linearly in =, namely, u = w.+zy,. In addition, denoting by w* and w™ the vertical
displacements at the top and bottom of the adhesive layer we assume &, = (v —w )/a.

Then, we consider the shear strain 3. = t./G. = (" —u Y a =7, Finally, ¢, = u.+ 2.,
uo=u,—aypj2.ut =4 ay)2.

(d) In 1™ (adhesive filler). For the double strap joint, the equations are the same as
eqn (1), exeept for adding subscript ¢ in Lamé constants and strains. We also assume the
displacement « to vary lincarly in = for the adhesive layer.

B. Stress resultants
In order to evaluate the internal and external work, we now define some stress resultants

with respect to cach center line in the local coordinates as follows.

(@) In"1” (central adherent).

h h
N, = J o . dz=(A+21)ut’y +Aw, y = j g.dz = Al + (A + 210w, (6)

) )

(b) In 2" (outer adherents).

2 Ll b E I
N3=f g, . d-= - ‘:u", M:=J :"-\d:'—"“l_‘;i ;,,u"g. @)

—h 2 -V

() Ine” (adhesive luyer).

(fa
N, = g.dz = (A + 2 )at. + A (ws—w )= (3A +2u, )ufim

fu'2
S. = o.dz = A, + (A + 20wy —w ) = BA+ 2u)afim
Qr = r\': d: = llt'(l‘l'('

o owl

fa 2 ”J )
M,= o, dz = 03 (A 42 ). (8)
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In the first two parts of eqn (8) we emploved the continuity conditions w”™ = w, . w™ = w.

(d) Inle” (udhesive filler).

"
N = j o, dz = (A +2p ), + Aw i — 3A, 4+ 2u)hfm

h
S.= J o.dz = Aty + (A4 2p 0w — GA A+ 2u ) Pm. 9)

Equations (6)-(9) are the stress resultants obtained by the substitution of stresses of
eqns (1)—(3).

C. Principle of virtual work and governing equations

We now employ the principle of virtual work dU = 01", where 0U and W are the
variations of internal and external work, respectively. as formulated in terms of kine-
matically admissible displacement ficlds (Dym and Shames, 1973). In our formulation we
shall ascertain the continuity of all displacements, at the interfaces between adhesive and
adherents, by employing Lagrange multipliers ¢, ¢,. p, and p,. respectively. We thus have

U = J NSy = Mo+ Nouw, + - S, (0w —dw )+ M5y
{ a

. . . : I, Lo
+Q.07.+ N+ | S o +q, <0u_~ + on'y—ou, — «)*,;)
h 2 2

. . a . . . . .
+q, <0u,—0u, - 7()‘,",>+p_‘(()w: —ow' ) +p(dw —ow))

. h | u . a
+D‘[l U, + 2 Wo—i. — 2‘[’:' +‘)(Il .~y — 2 Te

+ap.(ws—w )+ op (v —w)dy. (10)

Integration-by-parts of eqn (10) and collection of terms which multiply each of the
independent variations ouy, du,y, du,, dw,. dwy, dw', dw | d¢,. dy., Ip,. dp, and Jy, yield
the following field cquations:

—N\i—¢, =0
- N’: + Y= 0
— o=t =0

a a ,
Qo= S4:= 5= M. =0

hsl_'/’l=0

o B
—-1I:—§q:+p:=0
lS =0
a r—pl—

1
—ESc‘*'/’l =0
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, a
u+ swi—u— 37, =0

- -

a
= 5.~ =0

wy—w’" =0

wo—w, =0 (tia-ly

Equation [1{(i-]) expresses the continuity conditions of displacements at the interfaces.
which verifies that our previous assumptions are correct.

Denoting components of external traction with an asterisk, we have the following
expression commensurate with the integration-by-parts of eqn (10):

v

oW = [N:."oueﬁ\l:'o?&/\' You +N 3‘0u.~+(m + ;:llf)()n'g—/ll’f«)w':] .

)

Note that the Lagrange multipliers p,, p.. ¢, and ¢,. which are the force conjugates of the
vertical and horizontal displacements at the interfuces. represent the interlaminar normal
and shear stresses. Equation (1) gives

L | . . I
4 = §N.-+“Q«“0Mw q: = ’“%N‘-‘*“}Q.’—&M‘--

1
mn=p= S.=M q%. (12)

Proceeding in the standard manner, and climinating #, and u, with the aid of egn
(11i.j), we obtain the "natural™ boundary conditions for our problem from the components
in the variational form of external traction, dH, and conclude that following kinematic or
teaction quantitics must be prescribed at x = 0and x = ¢

u, or N +N,+N, und
[t «a
v, or 2N3- ,_)Np}-Mr and

h
Wy or M’;+,,q3 and

wh or — /;N:—M:. (13a-d)
At this point we note that eqn (Ha-¢) yiclds N+ N, + N, = constant, In the absence
of external foads we get N+ N, + N, = 0, whereby this field relation automatically incor-
porates the traction-free boundary condition listed in eqn (13a). For instance, the right part
of cqn (13b) is produced by substituting eqn (1a) and cqn (11b) into eqn (11d) and then
integrating.
Omitting eqgn (13a), which must be satisfied as a ficld equation, we get at the traction-
free boundary x = ¢:

SN =N) M, =0 (14)

,
MY+ ,)-([1 = ()

/
- '{N:—l‘lz =0.

)
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Symmetry considerations provide us with the following four boundary conditions at x = 0:

u, =0
Ye=0
wh =0
h
M.+ 34:=0. e

We now introduce the non-dimensional moduli ratios

A+ 2, . A,
A TN = f‘. AN I T f:. (|6J)
A A+ 2, IA 42,
I . A+2u .
g = s =S
IA 42, IA 424,
A o ENN=y? .
o5 =l i = /e
3A 420, A2,
the non-dimenstonal distances and variables
I « ) X
=0 =@, =" (16b)
(& (& ¢
and the non-dimensional kinematic variables
wy=awt’. owy=awl, ou,=au’, oy =M, (16¢)

Elimination of py, pas ¢y, g, ty, w0 wtand wo from eqn (1), employment of egn
{(8). non-dimensionalization of eqn (16) and after several manipultions of egn (1 le-1) yields

AyDu 4+ A Dy + Ao, +(AD Ay = fim

5 y pA
— A D u, F(AD+ Ay + A Dw — _P‘)j

D“H': =0

poADu. — A Dy .+ Agw, + A yws = —fim

2npd,

3 DY+ A “,)u'z = fim. (17a-d)

oA
(pA D+ AD)u. + p., ! D4 Ayaw, —-(

Inegn (17) D designates derivative with respect to x¥” and all variables are non-dimensional.
The expressions for A, are given in egns (Al) in the Appendix.

In a similar manner we can obtain the non-dimensional version of the seven boundary
conditions. cgns (14) and (15). at x¥” =0 and x*” = |, and expressions for the non-
dimensional interlaminar stresses ¢, ¢, py and p..

The system eqn (17) is of seventh order in the operator D, commensurate with the
seven boundary conditions, eqns (14) and (15). To solve our boundary valuc problem we
wish to represent eqn (17) by a system of first order differential equations. This reduction
cannot be accomplished directly because a straightforward procedure, e.g.. Du, = X,
D3u, = X, D'u, = X5, etc.. would introduce extraneous redundancies. To avoid these
redundancies we first eliminate w, from egn (17¢) and then differentiate and combine the
remaining equations to lower the order of the highest derivative of u, (Jen, 1980). In this
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manner we obtain the equivalent system:
B\ Du,+B.Dy,+(B.D + B,)w, = C,pm
(B['D:+B").,""+'(BlsD]+B|gD)H': = Cjﬁ'"’
B, Du,+B.,Dy, +(B,sD*+ B, ;D" + B,)w- = Cifm”+ C.m. (18)

The expressions for B, and C, are given in eqns (A2) in the Appendix. We now denote
.\-; =1u,. A\/’| = DUU. .Y: = Jes :"_z = .“’:.

(19

“.J = Wi, 4"5 = 4\,;. 4"(, = 1‘-’5. 1"7 = 4"’(,.

The system (18) then reads

B, 0 0 0 0 0 07 (X,
0 l 0 0 0 X,
0 B, 0 0 0 0 X,
0 l 0 0 0 4¥J =
0 0 0 0O 1t 0 0 X
0 0 0 0 0 1 0 X.
B, 0 0 0 0 0 B| L ACH
[0 0 -8, - B, 0 - B, 0 7 ( X [' C.\fim
0 0 | 0 0 0 0 X, 0
0 -8B, 0 0 - B, 0 - B X i’
0 0 0 0 | () 0 N, + 0
0 0 0 0 0 { 0 X, 0
0 0 0 0 0 0 | \, 0
0 0 -8B, -8B, 0 - B, 0 4 LAy L Caifim” + Cyfim |
(20)
Written compactly, eqn (20) rcads
[(A1CX") = [B]J(X)+(C)
whereby
(X7) = [DI(X) +(E)
with
(DY =[4]7"[B]. (E)=[A]"'(C). (1)

D. Solution of equations
The solution scheme deviates from the standard method (Hochstadt, 1963 ; Kolman,

1965 ; Coddington and Levinson, 1955), because ours is a boundary value, not an initial
value problem.

The complete solution (X) is formed by superposition of a particular solution (X,) and
a complementary solution (W). The particular solution (X,) is taken to satisfy eqn (21)
with null initial conditions (X,(0)) = (0) and can be formed by standard methods. The
complementary solution (W) is constructed by considering (E) = (0) in eqn (21) and in a
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manner which, together with (X,). satisfies the boundary conditions at x =0 and x = 1.
Note that (X). (X,) and (W) are seven-dimensional vectors.
Employing eqn (19). the non-dimensional boundary conditions are:

Xi0y=0. X.(00=0. X0) =0,
47.X,(0) = 3X(0)—-6X",(0) =0,
X () -3X,(H-6X1(1) =0,
X5 () =3X5 (1) —-6X7(1) =0,
R XD+ RAX:()+ RoX, () + RX (1) = Rspm(l). (22)
The expressions for R, are given in eqns (A3) in the Appendix.

Since much of what follows accords with standard methods (Hochstadt, 1963 ; Kolman,
1965 ; Coddington and Levinson. 19355). we shall omit details to retain brevity ; a complete
analysts is given in Jen (1980).

To determine the particular solution we consider the eigenvalue problem

[D}"+ A[7] = 0 which yiclds seven eigenvalues, one of which, say 4,. turns out tobe 4, = 0,
with the remaining six values generally being complex. Denoting the distinct eigenvalues

by Ay, Az .. Ay and the corresponding eigenvectors by (a)). (¢a).. ... (a,). it can be shown
that

(ay,) = (La 2. 000, .0.a )" and  (a,) = (0. Ladg dodye.aq) . i=2.3,...,7
with components expressed interms of B,, B, ..., B4, derived before by Jen (1980).

We now construct the 7 x 7 matrix {¢p] with clements ¢, = u,’, exp (4,x) (no sum on j).
This matrix can be written as

[#,,] = [diag c‘””a,’,‘]. (23)
Conscquently
(b, '] = ] dinge *] (24)
inegns 23) and 24) i j=1.2,..., 7.

We also torm the vector G,(x) by generating

X

(H() ={dO)E()), then G (x) = J. H.()dy. (25)

After several manipulations it can be shown that

T

Gi(x) = (g, +tln.¢/.«)/fj m(y)dy+a ,9,80m (x)—m’'(0)]

)

3

e m(y)dy+a,,9 _./fl:c"" m(x)—-m(0)—4, J v m(y) d)']

)

G (x) = U,?!/xf

0

T

+ 298¢ m () = (0) = &, ¢*F m(x) + Am(0) + A} f e m(yydy] (26)

Y]

(nosumoni,i=2.3,...,7)

The particular solution (X,) is given by

7

Y (MG i=1.2.....7 Q7

i=1

X,

[
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Or, in more detail
Yoo = '(X)ﬁ{(.éh +aw£fx)j: m{yydy+a;.g-[m'(x) —m'(O)lj1
+ii: (i i(.\')ﬂ{aﬂgx J:: e m( )+ a1 9 [e‘-‘ m(x)
—n{0) — 4, J‘: e m(y) d_r] +¢lk7g7[e*~‘ m’ (x)—m'(0)

— by € m(x) + A m(0) + 2§ j e m(y) d,r:l} (no sum on k). (27a)
{

)

As already mentioned, the construction eqn (27) satishies (X,(0)) = (0), but does not
meet boundary conditions eqn (22).

To satisfy eqn (22) we incorporate the complementary solution (W). To construct (W)
we consider (W') = [D (W), with[D] givenineqn (21). and solve the characteristic equation
det (D—-{I) = 0. The components of D,, are expressible in terms of B, B...... By (Jen,
1980) and we again obtain seven cigenvalues {y, with associated eigenvectors. As in the
case of the particular solution we have a null cigenvalue, say J, = 0 (Jen, 1980),

Atter several straightforward manipulations we get

’ Pk . , .
W, =K+ Z K‘{C [A_l‘(‘“ku—krh;f+:§')+ku+km;5J}°”‘

Lofr - .
Wy= 3 "\'[» : ("kn““kn.c.'*'s.'l)]c"'
=2 & /\H
? ' , )
W= Z K, k (—koa—kyll+80) e
-2 74
7
W, = z K o

Wo=Y K e

We=3Y Ko™

?
Wy=Y Kler. (28)
Ineqn (28) K. ¢ = 1.2...., 7, arc arbitrary constants. The various k,, are listed in eqns (A4)
in the Appendix.

In view of egns (22) and (27} we obtain the following seven equations to determine
theconstants K,. i = 1,2,....7:

W, (0) =0
W.(0) =0
W) =0

7
A (0) =3H(0) —6I75(0) = 3 Y (b5, (DG (0) + ¢ (DG, (0))

1=

+6 Y [0 (OG0 +2¢ 1, (G (0) +¢" 1, (0)G,(0)]
i=1
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i =307 {1 —-68B7 (1) = -y by ¢§,'(K}G,(l)+3z E(bz,‘(i}G;H)

Lw
1= 1=1

+¢ LG (M1+6 Y (67, (NG +24" 1 (DG (H+¢" 7, (DG, (D]

=1

WAL =30 —-687 (= =4 Y ¢, (DG +3 Y ¢, (NG,(D)

p= i r=1

+6 Y (60, (WG (+6", (NG, (1]

1=

R +RIAD+ R (D+ RN = R =R, Y [6, (DG (D)

r=1
+¢,' (WG, (D] =R T by, (NG (N =R ¥ ¢, (DG,(1)
ra | =1
,
—R, Y ¢, (DG,(D). (29)
pet

With K, determined from cqn (29) we finally obtain the solution X, = X, + IV,

Appropriate substitution in egn (12), and employment of the non-dimensionalization
eqn (16) and of cqn (19) yicld the following expressions for the non-dimenstonal inter-
faminar tangential and normal stresses

.. o fe o ), o efiA) .
11 = ( s | + 2t ‘)\ ' ‘-( IZI + 2“'0\ \ : +'/h\:

{P!AI (R{‘Z A ) R P tp,: ,

+( oo, )‘\-"—(2“2/“ fim

1y o 1y A
Iy o= - (‘f“;h + o/, |)".,; _ (‘P N - of. ”)X'; +11Xs

2 24, 12 2.4,
ol wfida).. o of .
e ( 3 + 2‘4“ A s+ 2 - 2A., I}IN

P= (W‘: + N -‘).t", Ay ( 747 '“).h - ( I - ’l : )/fm, (30)

Ay A, A, A,
In GO AT T P)Y = (g g ) 3A A+ 210,

E. Solution of a double strap joint

As for a double strap joint shown in Fig. Ih, we have to consider two parts of adhesive
and adherent, ¥ < ¢ and v 2 . scparately. At the Ieft part (¢ 2 x 2 0) the filler is the
sume as the adhesive layer, Then [y = [, fs = £, fo = L. we may obtain the field equations
as

(Al i} = Bl vl +(Cho (31)

The right part (1 2 x 2 o) is the central adherent of half overlap length. Similarly, we
obtain

["]r:"}r = [B]r{‘}r+ :C:' (32)
The boundary conditions at x =  are

X =0, x, () =0, N (0)y=0, 4nx,,(0) =35 (0)=6x7,(0) =0, (33

Sas 28:4-E
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At x = | they are
dnx., (D) =3x5% (1) —6x7,(1) =0
nxe (1) =3x5,(1) —6x7,(1) = 0
R, x0,(1)+ R, x+, (1) =Ry xo, (1) + Ryx (1) + Re,m(l) = 0. (34)

At the interfuce x = ¢ they are

Xilo) = x (@) X (@) = x2(@) X3 (@) = x4 (@), X50(@) = X5, (@)
.00 () = 3x5 (@) ~6xT, (@) = dnx4, (@) — 35, (9) —6X7,(0)
Anxa () =35 (@) —6x7, (@) = dnx,, (¢) — 3x5,(¢) — 6x7,(0)
Ry X1 (0)+ Ry X3 (0) + Ry X (@) + Ry X (@) + Rsym(e)
= R, X1 (@) + R X', (@) + Ry xe, (0) + Ry X4 (@) + Rmi(). (35)

Hence, we finally obtain a system of 14 equations of {4 unknowns with a total of 14
boundary conditions, i.c. eqns (33)-(35). Substituting the unique solutions of {x}!, and
tx}, into eqn (30). we may obtain the interfacial stresses for both purts.

LINEAR VISCOELASTIC SOLUTION

Most engineering materials exhibit creep and relaxation behavior which depends
strongly on temperature, stress level and loading duration. Certain matcerials, such as clay,
concrete, resin, and some polymers are influenced appreciably by moisture content as well.
Therefore, the need tor us to have a good understanding of time-dependent behavior has
aceelerated in recent years. The theory of lincar viscoclasticity is widely used today in
characterizing polymeric materials. This theory is applicable, in principle, to all materials
if the applied loads are sufliciently small. Henee, we adopt the theory to express the stress -
time teature of the moisture sorption in the adhesive layer.

The basis for the stress analysis of double-lap joints bonded with a viscoelastic adhesive
is the theory of linear viscocelustic stress analysis. A viscoelastic problelm s generally solved
by the Alfrey (1944) correspondence principle. In the correspondence principle, Laplace
transforms of the time-dependent boundary conditions and field equations are used to
reduce the viscocelastic problem to an associated elastic problem. Then, clastic analysis is
applied to get the associated elastic solution of the triansformed equations. Inversion of the
assoctated clastic solution results in the desired viscoelastic solution.

We now adopt the linear viscoelastic stress-strain relation (Schapery, 1980) to describe
the adhesive behavior, that is

o, =J CHie—1) X dr (36)
n ‘T

with the boundiry conditions
u=U on 8§,

en =T, on S, (37)

LY
where U, and 7, represent displucement and traction at 4, and S, and S, denote surface
displacement and force.

By Laplace transformation of eqns (36) and (37) we obtain

= ~kil
g, = sC &t

i=0C on S,

é,n=7T on S (38)
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where s is the variable of its Laplace transform. S, and S; do not necessarily change with
time.

Schapery (1967) derived the stress-strain relationship with the moisture expansion
coefficient independent of time, that is

U"ZJ:, Cf‘,’(t—t)%dr—ﬁ,,(l)l" (39)

where V= C¥()m.
Assuming the adhestve is homogeneous and isotropic, we can write

Br/ = ﬂ
CH(n = CIMEW (40)

where C** is a constant and E(¢) is the tension modulus. Then eqn (39) can be reduced to
; q

' é
o, = J‘n CHE(1—1) (f?“ dr—pV. (41

By Laplace transformation of eqn (41). we obtain
- 1
G, = sC* Er, - By (42)
s

FFor simplicity. replacing all the material constants and moisture expansion coeflicient in
the clastic solution correspondingly by the form of sC** and fi/s as expressed in eqn (42),
then we receive the viscoelastic solution in the domain of Laplace transform. In order to
solve it reversely we adopt Schapery's Direct Mcethod (Schapery, 1967) ;i a(r) has a small
curvature when plotted against the logarithm of time, then

(1) X $56,4(8). 2150 (43)

for all positive valtues of s, where s is the variable of its Laplace transform.
For many adhesives, Weitsman (1980) suggested that the creep under constant stress
can be expressed by a power law compliance :

D([) = D()+D|’u (44)

where 1, 1s the instantancous compliance, and D and g are material parameters. We note,
however, that the clastic stresses in egn (41) are expressed in terms of moduli. Therefore,
we shall employ the highly accurate, though approximate, inversion formula which refates
the relaxation modulus E(¢) to the creep compliance D (1), in Laplace transform

_ D, i+ -
D= <2 + Dl "'S'T;;-q)' . 435
RY s
Since
= i
ED = ;‘“5 (46)
then

-
_:ﬁ=[s2<~D—°+Dl£“,—fi))] . 47)
s°D s st
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For typical values of epoxy adhesives we choose D, =2x 10" (psi)"'. D, =0.2x 10",
g =0.2and § = 0.03 to compute the approximate viscoelastic solution.

THE FINITE ELEMENT METHOD

In comparison with linear elastic and viscoelastic solutions, onc-quarter of the double-
lap joint is analyzed because of svmmetry about the x and - axes by the finite clement
method to vield a good approximation. Herein, we adopt the second order element for time
and space savings with eight nodes. having worked out the third order efement and found
that their results were very close. Obviously. we know that the critical sections of the joint
are at or necar the edges of the overlap where the magnitudes of the stresses and their
gradients are high. Therefore. the joint is divided into a mesh of elements of ditferent sizes,
i.e.. small elements in regions where the stress gradients are high, and large elements in
regions where the stresses are almost uniform.

In this work we consider it as a onc-axis problem. the v-axis. The FEM meshes are
shown in Fig. 2 for the first quadrant of the joint, which includes 484 clements and 1583
nodes. The line segments in the v -2 plane are chosen such that the finite element mesh is
finer in the areas of high stress gradients. The computer program SAP 6 is used for this
task. The maximum aspect ratio of an element is 10 and occurs in the middle two-thirds of
the overlap. The minimum aspect ratio of one occurs in the arca of high stress gradients.
The dilferences in the geometries of the various joints analyzed arc incorporated with as
little change in the finite clement mesh as possible.

NUMERICAL RESULTS

In our computations we considered f = 1.27 cm (0.57), a = 0.254 c¢cm (0.17) and
¢ = 254 em (17). The material properties were selected to represent an cpoxy adhesive and
aluminum adherents; henee £, = 3.45x 10" kPa (5x 10° psi), v, = 0.35, I = 6893 x 10’
kP (107 psi), and v = 0.3, Although the adhesive fayer thickness is thin in practice, we
chose a very thick adhesive 1o avoid very large aspect ratios of the clement and to save
computing time. The moisture expansion coeflicient was taken as /£ = 0.03. This coctlicient
relates lincar strain due to moisture weight gain at 100% relative humidity.

Culeulations were performed for m(x) = m + (1 —m)x3 for m(x) = 1 —=(1 —nr)ae,
and for mi(x) = 1. The tirst of those cases, with nr, = 0.25, represents the state of moisture

et b

i
|
t

T

| i :

mm i |
! (Lt l 1] i e N

Fig. 2. The FEM meshes of the first quadrant,
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absorption from the exposed locations x = 1, e.g.. the free edge of the first quadrant non-
dimensional distance from the origin. The second case. with m, = 0.25. demonstrates
the stage of moisture desorption, while m(x) = | signifies equilibrium moisture content.
Although none of the above non-uniform distributions corresponds to a solution of the
diffusion equation. these parabolic moisture profiles enable an analytic evaluation of the
linear elastic solution. thus substantially reducing the numerical effort while still dem-
onstrating the basic features of our problem.

The results are shown in Figs 3-14, where non-dimensional values of stresses versus
distance are given. To obtain dimensional values we must multiply displacements by a
and stresses by (3A.+2). Figure 3 shows the non-dimensional displucement w, of the
overlapping adherents vs the non-dimensional coordinate x, while Fig. 4 tllustrates the non-
dimensional peeling stress P vs x. In this figure and the figures for stresses hereafter,
“ELASTIC™ denotes the linear elastic numerical result calculated from eqn (30) for a
svmmetric, double lap joint, "FILLER™ means the linear elastic numerical result calculated
by FEM instead of the Section E solution of a double strap joint without tedious compu-
tation. while " V.E.” represents the linear viscoelastic solution for a symmetric, double fap
joint at the time change, and “F. E.M.” illustrates the numerical FEM result by SAP 6 for
a symmetric. double lap joint. Figures S and 6 express the interlaminar shear stresses T

006 — 1

[eo ]

ooz

X

Fig. 3. The non-dimensional displacement 3, of the outer adherents vs the noa-dimensional distance
X for the first case of moisture absorption.

0 008 —
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0 002

-0 002

-0 004

Elastic
t=0

-0 006 - X \\VAE % +100

Fig. 4. The non-dimensional peel stress P vs the non-dimensional distance x for the first case of
moisture absorption.
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Fig. 5. The non-dimensional interlaminar shear stress 7', vs the non-dimensional distance x for the
first case of moisture absorption.
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Fig. 6. The non-dimensional interlaminar shear stress Ty vs the non-dimensional distance x for the
tirst case of moisture absorption.

and T, vs v, Figures 3 6 correspond to the first case of moisture absorption, as shown in
the insert. The moisture sorption modeled in SAP 6 can be tuken for granted as the
temperature effect shown in the User Manual.

The normal stress P and interlaminar shear stresses 7 and 75 of FEM curves are the
data taken from the interfaces. Near the free edge these stresses behave singularly with a
big jump of the highest absolute value. Figures 7-10 und 11-14 are analogous to Figs 3-6,
but arc unrelated to the second case of moisture desorption and to a uniform cquilibrium
moisture distribution, respectively. In each case the moisture distribution is shown in the
mnsert.

DISCUSSIONS

Note the opposite trends exhibited by the results of Figs 3-6 on one hand und Figs 7-
10 on the other for elastic and viscoelastic solutions. During moisture absorption the outer
adherents possess positive curvatures and the maximal peel stresses are compressive. This
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Fig. 7. The non-dimensional displacement 7, of the outer adherents vs the non-dimensional distance
x for the second case of moisture absorption.

008
VE
t «500
Elastic

0 006 t=Q

0004 “FEM

Q002

P
is] -
-0 002
-0004 p ..~'. M
o 0 25—
-0006 b o !

Fig. 8. The non-dimensional peel stress £ vs the non-dimensional distance x for the second case of
moisture desorption,
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Fig. 9. The non-dimensional interlaminar shear stress T, vs the non-dimensional distance x for the
second case of moisture desorption.
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Fig. 10. The non-dimensional interfaminar shear stress T vs the non-dumensional distance v for
the second case of moisture desorption.
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Fig. 11, The non-dimensional displacement B, of the outer adherents vs the non-dimensional
distance v tor a uniform equilibrium moisture distribution.
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Fig. 12. The non-dimensional peel stress P vs the non-dimensional distance x for a uniform
equilibrium moisture distribution.
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Fig. 13, The non-dimensional interlaminar stress 7'y vs the non-dimensional distance x for a unitorm
cquilibrium moisture distribution.
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Fig. 14, The non-dimensional interlaminar stress 7'y vs the non-dimensional distance x for a uniform
equihibrium moisture distribution.

situation reverses itselt upon desorption. which is accompinied by severe tensile stresses.
The observation leads us to conclude that desorption is generally more detrimental to the
integrity of the joint. We also note a reversal in the signs of the interlaminar shear stresses,
when comparing the absorption and desorption cases. FFurthermore, in both cases T, and
T’y are of opposite sign, a fact which points to the severity ol the shear effects within the
adhesive layer, especially near the free edge where a theoretical singularity is predicted by
clasticity theory. The case of uniform equilibrium moisture distribution, shown in Figs |1 -
14, indicates that although the outer adherents displace with only slight bending, the joint
nevertheless sustains substantial stresses. These stresses are attributable to the discrepancy
between the moduli of the adhesive and adherent materials.

The absolute value of the viscoclastic solution becomes slightly targer than that of the
clastic solution as the time increases for peeling stress in both absorption and desorption
cases duc to the decrease of relaxation modulus £(1). i.c.. the adhesive becomes softer. The
stitfness difference between decreasing E (1) of adhesive and unchanged adherent will become
more significant with increasing time, which results in the slightly larger viscoclastic stresses.
As for interlaminar shear stresses both solutions have no difference. The curves of both
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cases almost interscct at x = 0.6. Similarly. for the equilibrium case both solutions are very
close even for very fong time, because weight gain of moisture will not increase, i.e. it is
independent of time. [n comparison with the thermal expansion coefficient we find that the
moisture content change is a very very slow process and its influence is a long-term effect.
Hence, we may neglect the moisture effect for a very short time.

As predicted by elasticity the theoretical singularity at the free edge is verified by the
FEM. The FEM results are very close to the elastic solution at 0 < x £ 0.6 and deviated
slightly at 0.6 < x < 0.8. While at x > 0.8 the stresses increase toward the free edge. we
have made even more refinements near the free edge. In most situations the singular stresses
of peel and shear are opposite to the elastic values at the free edge due to random divergence
of the computer program used to treat the singular problem. This problem is similar to free
edges of composite laminates: we can solve it by finding the order of singularity first and
compute interlaminar stresses (Jen ef al., 1990a.b).

For a double strap joint. shown in Fig. |b. the tiny gap between the central adherents
is filled with adhesive which is the same material as the adhesive layer. We have also
obtained the values of stresses denoted by “FILLER™ in the figures. In the first case of
absorption the stresses are close to the result of FEM at 0 < v < 0.2, In the desorption and
equilibrium cases the filler has a large influence on the stresses of peel and shear and the
change is not imited to a small part necar the gap. Berg (1970) analyzed a bonded double
lap joint and suggested interleaving the materials of a gap joint to reduce the high stresses
that otherwise occur where the layers meet. Henee, the symmetric, double tap joint is better
than the double strap duc to the environmental ceffect ol resisting smaller residual stresses,

CONCLUSIONS

This paper presented solutions to sample problems which demonstrate the effects of
non-uniform moisture profiles on the residual stress ficld in bonded joints.

First, the solutions are derived for a lincarly clastic response of both adhesive and
adherent materials which are based upon restrictively kinematical assumptions. We then
extend them to apply to the linear viscoelastic response, and verify them by using the FEM
to be suitable for double strap joints. Parametric studics, which tnvolved the computation
of interlaminar stresses tor increasingly stiffer adherents, indicated that the peel stresses
tended to increase and the magnitudes of the shear stresses remained substantially
unchanged. The last observation indicates that the kinematical assumptions employed in
this paper restrict the validity of our results to adhesive bond lines which are not excessively
thin and our conclusions can serve as guidelines only under these limitations. A com-
prehensive treatment of the problem presented herein involves the incorporation of the
inclastic and non-lincar constitutive behavior of the adhesive. Such treatment should be
based on numerical formulations and solutions. Finally, we suggest that in the consideration
of environmental effects on adhesives, the interaction of both moisture and temperature
should be paid attention to in further rescarch,
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APPENDIX
The foltowing expressions detine the constants employed in this paper:
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